|
In engineering, physics and chemistry, the study of transport phenomena concerns the exchange of mass, energy, and momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others. While it draws its theoretical foundation from principles in a number of fields, most of the fundamental transport theory is a restatement of basic conservation laws. The fundamental analyses in all three subfields of mass, heat, and momentum transfer are often grounded in the simple principle that the sum total of the quantities being studied must be conserved by the system and its environment. Thus, the different phenomena that lead to transport are each considered individually with the knowledge that the sum of their contributions must equal zero. This principle is useful for calculating many relevant quantities. For example, in fluid mechanics, a common use of transport analysis is to determine the velocity profile of a fluid flowing through a rigid volume. Transport phenomena are ubiquitous throughout the engineering disciplines. Some of the most common examples of transport analysis in engineering are seen in the fields of process, chemical, biological, and mechanical engineering, but the subject is a fundamental component of the curriculum in all disciplines involved in any way with fluid mechanics, heat transfer, and mass transfer. It is now considered to be a part of the engineering discipline as much as thermodynamics, mechanics, and electromagnetism. Transport phenomena encompass all agents of physical change in the universe. Moreover, they are considered to be fundamental building blocks which developed the universe, and which is responsible for the success of all life on earth. However, the scope here is limited to the relationship of transport phenomena to artificial engineered systems. ==Overview== In physics, transport phenomena are all irreversible processes of statistical nature stemming from the random continuous motion of molecules, mostly observed in fluids. Every aspect of transport phenomena is grounded in two primary concepts : the conservation laws, and the constitutive equations. The conservation laws, which in the context of transport phenomena are formulated as continuity equations, describe how the quantity being studied must be conserved. The constitutive equations describe how the quantity in question responds to various stimuli via transport. Prominent examples include Fourier's Law of Heat Conduction and the Navier-Stokes equations, which describe, respectively, the response of heat flux to temperature gradients and the relationship between fluid flux and the forces applied to the fluid. These equations also demonstrate the deep connection between transport phenomena and thermodynamics, a connection that explains why transport phenomena are irreversible. Almost all of these physical phenomena ultimately involve systems seeking their lowest energy state in keeping with the principle of minimum energy. As they approach this state, they tend to achieve true thermodynamic equilibrium, at which point there are no longer any driving forces in the system and transport ceases. The various aspects of such equilibrium are directly connected to a specific transport: heat transfer is the system's attempt to achieve thermal equilibrium with its environment, just as mass and momentum transport move the system towards chemical and mechanical equilibrium. Examples of transport processes include heat conduction (energy transfer), fluid flow (momentum transfer), molecular diffusion (mass transfer), radiation and electric charge transfer in semiconductors.〔Plawsky, Joel., "Transport Phenomena Fundamentals." Marcel Dekker Inc.,2009〕〔Alonso & Finn. "Physics." Addison Wesley,1992. Chapter 18〕〔Deen, William M. "Analysis of Transport Phenomena." Oxford University Press. 1998〕〔J. M. Ziman, ''Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Classic Texts in the Physical Sciences)''〕 Transport phenomena have wide application. For example, in solid state physics, the motion and interaction of electrons, holes and phonons are studied under "transport phenomena". Another example is in biomedical engineering, where some transport phenomena of interest are thermoregulation, perfusion, and microfluidics. In chemical engineering, transport phenomena are studied in reactor design, analysis of molecular or diffusive transport mechanisms, and metallurgy. The transport of mass, energy, and momentum can be affected by the presence of external sources: * An odor dissipates more slowly (and may intensify) when the source of the odor remains present. * The rate of cooling of a solid that is conducting heat depends on whether a heat source is applied. * The gravitational force acting on a rain drop counteracts the resistance or drag imparted by the surrounding air. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Transport phenomena」の詳細全文を読む スポンサード リンク
|